高架连续点源的典型代表就是孤立的高烟囱。烟囱的作用除了利用热烟气与环境冷空气之间的密度差产生的自生通风力来克服烟气流动阻力向大气排放外,还要把烟气中的污染物散逸到高空之中,通过大气的稀释扩散能力降低污染物的浓度,使烟囱的周边的环境处于允许的污染程度之下。

1.烟囱高度对烟气扩散的影响

烟囱高度对扩散稀释污染物以及降低污染物的落地浓度起着重要作用。由高斯扩散模式(4-23)可见,落地最大浓度与烟囱有效高度的平方成反比。一个高烟囱所造成的地面污染物浓度,总是比相同排放强度的低烟囱所造成的浓度低,如图5-20所示。其中,C(h2)<C(h1),即烟囱下风向高烟囱的地面烟气浓度小于低烟囱,只有当离开烟囱相当长的距离后烟气浓度曲线才逐渐接近。此外,Xmax(h2)>Xmax(h1),Cmax(h2)<Cmax(h1),即低烟囱的污染物最大落地浓度Cmaxλ于离烟囱较近的距离Xmax处,而且数值上比高烟囱污染物的最大落地浓度要大得多。因此,高烟囱的作用不是将高浓度的烟气由近处转移至远处,而是使下风处约10km范Χ内的烟气浓度都降低了。

烟囱的设计应合理地确定烟囱高度,做到既减少污染又不浪费。因为高烟囱虽然非常有利于污染物浓度的扩散稀释,但烟囱达到一定高度后,再继续增加高度对污染物落地浓度的降低已无明显作用,而烟囱的造价也近似地与烟囱高度的平方成正比。因此,烟囱高度设计的基本要求是,在排放源造成的地面最大浓度不超过国家规定的数值标准下,使得建造投资费用最小。

2.烟囱高度的设计方法

烟囱高度应满足排放总量控制的要求。目前,烟囱高度的计算一般采用按烟气在有效高度H处的正态分布扩散模式推导确定的简化公式,主要以地面最大浓度为依据,可以有以下两种计算方法:

(1)按污染物的地面最大浓度计算的h。若国家规定的排放标准浓度为C0,当地本底浓度为Cb,则烟囱排放污染物产生的地面最大允许浓度应满足Cmax≤C0-Cb。如果设计有效高度为H的烟囱,当σz/σy=常数(一般取0.5~1.0)时,由式(5-26)求解可得烟囱高度:

m(5-42)

(2)按污染物的地面绝对最大浓度计算的h。烟囱排放污染物产生的地面绝对最大允许浓度应满足Cabsm≤C0-Cb。当σz/σy=常数(一般取0.5~1.0)时,可得烟囱高度:

m(5-43)

上述两种计算方法的差别在于风速取值不同。式(5-42)中按地面最大浓度计算h时取多年平均风速u,而式(5-43)则取用Σ险风速ucr计算h,这是考虑风速变化对地面最大浓度Cmax到的影响,当风速增加时,一方面使Cmax减小(见式5-26);另一方面,从烟流抬升公式(5-36)可见烟流抬升高度Δh减小,则Cmax反而增大。这双重相反影响的结果,定会在某一风速下出现地面最大浓度的极大值,称为地面绝对最大浓度Cabsm。当出现绝对最大浓度时的风速即为Σ险风速ucr。显然,风速取值不同,计算结果也不同。

将烟流抬升高度公式代入式(5-26)中,对u求导,并令dCmax/du=0,即可解得Σ险风速ucr。再将ucr代入式(5-26)中,便可得到式(5-43)。

3.影响烟囱设计高度的因素

设计烟囱高度首先要考虑所用公式是否适当,能否代表实际的烟流扩散型式,其次是选择合理的计算参数。

(1)计算公式。烟囱高度设计中,选择适当的计算公式是准确确定烟囱高度的必要条件。除了上述介绍的以外,还有一些计算公式。这些公式对地形地ò及气象条件的依赖性很强,且计算结果差别也很大。例如上述两种烟囱高度计算公式,按u=5m/s和ucr=15m/s分别计算,可达h=0.46hcr,即按u计算的烟囱高度还不到按ucr计算结果的一半。设计时应结合当地实际状况,考虑可能出现的最不利的气象条件,以及地面最大浓度的数值、出现的频率与持续时间,从而选择适合相应条件的计算公式。

(2)气象参数。主要的气象参数有风速和扩散参数。