【摘要】大部分原油具有粘稠度高、本身比重大, 缺乏流动性的特点。采出原油时井口的温度较低,因此集输系统采取掺水流程。掺入水量比含水反相点要低的,容易易产生W/O类型的乳化油,比含水反相点高的,则产生W/O/W型的乳化油和水的共存体系。集输系统管线回流压力大幅减低,但因掺水量过大,造成集输系统能耗以及脱水成本增加。所以, 要对原油集输系统沉降脱水处理工艺的参数进行科学试验得以优化,作为生产的技术支持。
【关键词】集输系统;脱水处理;优化
一、室内标准及原油试样的评价
1、 所用的食品及执行标准
破乳剂选择和热化学沉降脱水处理工艺的参数试验执行标准为:SY/T 5281- 2000 《原油破乳剂使用性能检测方法》。原油粘温曲线的检测按照标准:SY /T7549-2000“原油粘温曲线的认定也称做旋转粘度剂法”。所用仪器:H aake RS300流变仪。
2、 油样的试验
试验的油样为新鲜的混合原油,经过一段时间自然的沉降后,分离出的乳化油和游离水将分别作为水包油和油包水两种类型的试验介质。由净化油得出的粘温曲线和原油物性可以发现,油的密度及胶质含量的高低,粘度随着温度的变化下降的的程度,能分析出油样的粘度对温度的敏感性,从而确定油样是属于稠油范畴还是稀油范畴。
二、室内试验结果及对结果的讨论
1、 乳化油的油水反相点
油水反相点是指含水稠油的流变性的重要特征之一,对集输系统管线内压降会产生很大的影响。乳化油在低含水量的情况下易容形成W/O体系,而含水率在超出一定极度时,W/O体系的乳化油会转变为O/W体系,这时的含水率被称为乳化反相点。当乳化油转变为水包油型时,其粘稠度会大大减小,输送压降也相应减小,这利于合理输送含水稠油。
乳化油的配制是依据混合油的质量百分比,分别称取水量及原油量,油和水在50℃的温度下进行恒温预热,预热时间30min。将油样和水样放入HT-2型高速混调器中,均匀的搅拌,乳化油制备就完成了。实验所用乳化油用同样方法制备,确保乳化油性质相同。
由原油乳化反相点曲线能看出,含水稠油的粘度会随着含水率增加而增大,含水稠油在含水率在某个百分比时乳化油粘度最大,含水率大于此百分之时则发生转变,转变为乳化油、水共存体系,此时所含的水是连续相,原油粘度快速下降,这个百分比即为试验稠油本身的极限含水的反相点。建议:集输油含水在极限含水反相点条件下进行即既能使集办理系统安全运行,又不会使脱水处理的运行负担太重,有利于脱水处理。
2、 破乳剂性能的科学评价
试验方法:在100mL容量的磨口量筒中,倒入80mL的原油乳状油样,放入恒温水浴中预热15min再注入一些破乳剂溶液,进行振摇200次,再放入恒温水浴中,记录下分段时间中分离出的水的体积。由此计算出原油本身的含水率,并观察油水分界面、分离出水的颜色以及原油粘壁状况并记录。
(1)破乳剂筛选。在 80℃的温度下分别用用不同的破乳剂进行混合油破乳剂的筛选。
从不同时间的沉降原油的含水率相互对比可以发现,破乳剂是否有很好的亲油性和亲水性。原油的分子分散布于乳化油中,是否能迅速向油水界面扩散,与分散的天然乳化剂进行置换,形成一层不稳定的界面膜,使之与油中的水珠聚集成大颗的水滴,在油与水密度差异的作用下进行沉降破乳。再看脱出的水是否颜色较清。
(2)热化学脱水试验。在 60、 65、 70、 75、80℃下,筛选出的破乳剂80、100、200mg/L,对原同含水率40%、50%、60% 和70%乳化油分别进行静态的热化学脱水试验来检验原油含水率是否达标。
(3)破乳剂的配伍性试验。原油加入破乳剂混合处理后在用破乳剂的配伍性试验。结果表明按比例混合不同种类的破乳剂对混合油的脱水效果要高于单独使用一种破乳剂。由此可见用破乳剂反复配合使用对试验效果具有协助作用。
结语:
1、如果原油本身密度大,胶质的含量也高,粘稠度随着温度变化呈直线下降状态,说明该原油的粘度对温度变化的敏感性很强,这种原油则属于稠油,反之则属于稀油。
2、油水转相点的百分比决定了输油含水量在在何种条件下既能够使系统安全的运行,又不致脱水处理的负担过大,同时比较利于脱水。一般来说含水率在百分之40到70之间的不加破乳剂的乳化油其稳定性比较大,60~ 80℃的温度内热沉降24小时基本不脱出水,对温度的变化不是很敏感。
3、破乳剂脱水速度、脱水率等决定了油水界面是否较齐,脱出水是否较清。对含水4到6成的乳化油添加剂量为150~200mg/L破乳剂,脱水温度为80℃,热沉降的所用时间不超过24小时。对于含水率为百分之70的原油,推荐添加剂量100mg/L,脱水温度在70~ 75 ℃之间,热沉降所用时间超过6个小时,原油的含水率即可达到标准。
4、为原油筛选出的破乳剂和其它合格的破乳剂若具有较好的配伍性。两种破乳剂复配使用能够有很好的协同作用,按比例混配具有更好的脱水效果,脱水率定会高于单剂使用。
参考文献
[1] 师秀林. 浅析自动化仪表在延长油田原油集输中的应用[J]. 延安大学学报(自然科学版). 2012(01)
[2] 鞠汉良、秦晓亮、唐敏. 井口电磁加热器在三塘湖油田的应用[J]. 科技创新导报. 2012(08)
[3] 曾昭英、周峤、吴新果. 原油集输系统能耗分析软件开发与应用[J]. 科学技术与工程. 2012(05)
【关键词】集输系统;脱水处理;优化
一、室内标准及原油试样的评价
1、 所用的食品及执行标准
破乳剂选择和热化学沉降脱水处理工艺的参数试验执行标准为:SY/T 5281- 2000 《原油破乳剂使用性能检测方法》。原油粘温曲线的检测按照标准:SY /T7549-2000“原油粘温曲线的认定也称做旋转粘度剂法”。所用仪器:H aake RS300流变仪。
2、 油样的试验
试验的油样为新鲜的混合原油,经过一段时间自然的沉降后,分离出的乳化油和游离水将分别作为水包油和油包水两种类型的试验介质。由净化油得出的粘温曲线和原油物性可以发现,油的密度及胶质含量的高低,粘度随着温度的变化下降的的程度,能分析出油样的粘度对温度的敏感性,从而确定油样是属于稠油范畴还是稀油范畴。
二、室内试验结果及对结果的讨论
1、 乳化油的油水反相点
油水反相点是指含水稠油的流变性的重要特征之一,对集输系统管线内压降会产生很大的影响。乳化油在低含水量的情况下易容形成W/O体系,而含水率在超出一定极度时,W/O体系的乳化油会转变为O/W体系,这时的含水率被称为乳化反相点。当乳化油转变为水包油型时,其粘稠度会大大减小,输送压降也相应减小,这利于合理输送含水稠油。
乳化油的配制是依据混合油的质量百分比,分别称取水量及原油量,油和水在50℃的温度下进行恒温预热,预热时间30min。将油样和水样放入HT-2型高速混调器中,均匀的搅拌,乳化油制备就完成了。实验所用乳化油用同样方法制备,确保乳化油性质相同。
由原油乳化反相点曲线能看出,含水稠油的粘度会随着含水率增加而增大,含水稠油在含水率在某个百分比时乳化油粘度最大,含水率大于此百分之时则发生转变,转变为乳化油、水共存体系,此时所含的水是连续相,原油粘度快速下降,这个百分比即为试验稠油本身的极限含水的反相点。建议:集输油含水在极限含水反相点条件下进行即既能使集办理系统安全运行,又不会使脱水处理的运行负担太重,有利于脱水处理。
2、 破乳剂性能的科学评价
试验方法:在100mL容量的磨口量筒中,倒入80mL的原油乳状油样,放入恒温水浴中预热15min再注入一些破乳剂溶液,进行振摇200次,再放入恒温水浴中,记录下分段时间中分离出的水的体积。由此计算出原油本身的含水率,并观察油水分界面、分离出水的颜色以及原油粘壁状况并记录。
(1)破乳剂筛选。在 80℃的温度下分别用用不同的破乳剂进行混合油破乳剂的筛选。
从不同时间的沉降原油的含水率相互对比可以发现,破乳剂是否有很好的亲油性和亲水性。原油的分子分散布于乳化油中,是否能迅速向油水界面扩散,与分散的天然乳化剂进行置换,形成一层不稳定的界面膜,使之与油中的水珠聚集成大颗的水滴,在油与水密度差异的作用下进行沉降破乳。再看脱出的水是否颜色较清。
(2)热化学脱水试验。在 60、 65、 70、 75、80℃下,筛选出的破乳剂80、100、200mg/L,对原同含水率40%、50%、60% 和70%乳化油分别进行静态的热化学脱水试验来检验原油含水率是否达标。
(3)破乳剂的配伍性试验。原油加入破乳剂混合处理后在用破乳剂的配伍性试验。结果表明按比例混合不同种类的破乳剂对混合油的脱水效果要高于单独使用一种破乳剂。由此可见用破乳剂反复配合使用对试验效果具有协助作用。
结语:
1、如果原油本身密度大,胶质的含量也高,粘稠度随着温度变化呈直线下降状态,说明该原油的粘度对温度变化的敏感性很强,这种原油则属于稠油,反之则属于稀油。
2、油水转相点的百分比决定了输油含水量在在何种条件下既能够使系统安全的运行,又不致脱水处理的负担过大,同时比较利于脱水。一般来说含水率在百分之40到70之间的不加破乳剂的乳化油其稳定性比较大,60~ 80℃的温度内热沉降24小时基本不脱出水,对温度的变化不是很敏感。
3、破乳剂脱水速度、脱水率等决定了油水界面是否较齐,脱出水是否较清。对含水4到6成的乳化油添加剂量为150~200mg/L破乳剂,脱水温度为80℃,热沉降的所用时间不超过24小时。对于含水率为百分之70的原油,推荐添加剂量100mg/L,脱水温度在70~ 75 ℃之间,热沉降所用时间超过6个小时,原油的含水率即可达到标准。
4、为原油筛选出的破乳剂和其它合格的破乳剂若具有较好的配伍性。两种破乳剂复配使用能够有很好的协同作用,按比例混配具有更好的脱水效果,脱水率定会高于单剂使用。
参考文献
[1] 师秀林. 浅析自动化仪表在延长油田原油集输中的应用[J]. 延安大学学报(自然科学版). 2012(01)
[2] 鞠汉良、秦晓亮、唐敏. 井口电磁加热器在三塘湖油田的应用[J]. 科技创新导报. 2012(08)
[3] 曾昭英、周峤、吴新果. 原油集输系统能耗分析软件开发与应用[J]. 科学技术与工程. 2012(05)