摘 要:在建筑工程中,桩基以其承载力大,地层适用性强,成本较低等诸多优点而被广泛采用。但由于工程中施工设备、技术以及其他各种不可预知的变量造成的工程桩缺陷问题也日益凸显,如何采用有效的检测手段对基桩质量进行检测,对提高工程质量有着重要意义。本文结合目前的桩基检测手段,探讨了在当前形势下如何搞好桩基检测工作, 使得桩基更好地辅助工程建设。

关键词:桩基完整性检测; 检测标准 ;存在问题 ;解决措施

       1.桩基完整性检测方法
  检测桩基完整性的方法很多,一般可分为有损试验,加静载荷试验,钻取桩身混凝土芯样,在桩身中钻一或两个孔,然后进行单孔或跨孔的声波测量。这类方法成本高,且试验周期长。另一类的无损检测方法,例如声脉冲反射波法,稳态和瞬态机械阻抗法,高应变应力波法等。一般来说,凡是在桩身中引起小的变形的动力检测方法统称为低应变法;而在桩身中引起大应变的方法称为高应变法。下面对桩基完整性检测方法中应用较多的几种方法做简要介绍。
  (1)静载检测法
  静载试验是利用接近于桩的实际受力状况,分级在桩顶施加荷载,通过观测桩顶的位移沉降,根据一定的判别标准获得单桩的承载力的方法。是目前检测单桩的承载力最可靠的方法,当采用其他间接方法获得检测结果有争议时用它来进行仲裁。最大的有点在于方法准确可靠,但是做起来费时费钱,检测数量少,代表性差,而且大吨位基桩由于加载设备限制很难进行。
  (2)低应变法
  低应变法又叫应力波法,是以手锤或力棒敲击桩顶,给桩一定的能量,产生一纵向应力波,该应力波沿桩身向下传播,由传感器(速度型或加速度型)拾取桩身缺陷及不同界面的反射信号,通过检测和分析应力波在桩身中的传播历程。便可分析出桩基的完整性,并根据桩身突然变化界面时(如:桩底沉渣过厚、桩身夹泥、断裂、扩径或缩径等)所产生的反射和透射波,来确定桩身缺陷性质,估算桩长或缺陷位置,且根据应力波在桩身中的传播速度来推断混凝土的强度[1] 。
  (3)高应变法
  高应变法是用重锤冲击桩顶,通过分析在桩侧对称安装的两对传感器记录的力和加速度曲线,以获得桩土性状的一种检测方法。高应变法的主要功能是判定单桩竖向抗压承载力是否满足设计要求和桩身完整性的。
  与低应变法检测的快捷、廉价相比,高应变法检测桩身完整性虽然是附带性的,但由于其激励能量和检测有效深度大的优点,特别在判定桩身水平整合型缝隙、预制桩接头等缺陷时,能够在查明这些“缺陷”是否影响竖向抗压承载力的基础上,能合理判定缺陷程度。如果带有普查性的完整性检测,采用低应变法更为恰当。高应变检测技术是从打入式预制桩发展起来的,试打桩和打桩监控属于其特有的功能,是静载试验无法做到的。但目前受检测人员水平和桩与土之间相互作用模型等问题的影响,该方法仍有较大的局限性,尚不能完全代替静载荷试验而作为确定单桩竖向抗压极限承载力的设计依据。
  (4)声波透射法
  在桩身中预埋声测管,并在两声测管之间发射和接收超声波,通过实测声波在混凝土介质中传播的声时、频率和波幅衰减等声学参数的变化,对桩身完整性进行检测的方法。在桩内预埋纵向声测管道,将超声脉冲发射和接收探头置于声测管中,管中充满清水作耦合剂,由仪器发出周期性电脉冲通过发射探头发射并穿透混凝土,被接收探头接收并转换成电信号。由仪器中的测量系统测出超声脉冲穿过桩体所需时间、接收波幅值、接收脉冲主频率、接收波形及频谱等参数。最后由数据处理系统按判断软件对接收信号的各种参数进行综合判断和分析,即可对混凝土各种内部缺陷的性质、大小、位置作出判断,并给出混凝土总体均匀性和强度等级的评价指标。
  声波透射法的优点是准确可靠,尤其在有缺陷的位置附近可以进行加密测量,从而对缺陷位置有更为准确的判断。但是不易做到随机抽检。
    (5)钻孔取芯法
  钻孔取芯法是用地质钻机沿着桩顶一直钻到桩底,并进入持力层一定深度,取芯样进行状态和强度检验以获得桩身完整性及持力层岩土性状的一种检测方法。该方法主要目的是检测桩身完整性、混凝土强度、持力层岩土性状。能对桩身质量进行直观地定性分析,能检测桩身混凝土强度、离析和胶结、混凝土级配搅拌情况(水泥水化等)、桩底沉渣(桩身夹渣)或桩底欠挖情况、基岩的岩性及承载力情况,还可利用抽芯桩孔对断桩、夹泥病桩进行灌浆补强处理,是检测方法中应用最为普遍的一种方法。但是缺点是费用较高,容易“一孔之见”,桩径小而桩长较长时容易偏出桩身之外,不能轻易给受检桩下结论。

  2.桩基完整性检测的标准
  目前对桩基完整性质量检测尚无明确定义,近年来不少专家提出了桩基完整性类别的划分方法,即把桩基划分为Ⅰ类桩、Ⅱ类桩和Ⅲ类桩。Ⅰ类桩为桩身完整,无缺陷;Ⅱ类桩为桩身有轻微缺陷,但不影响承载力;Ⅲ类桩为桩身存在严重缺陷,影响承载力[2]。这种划分其实也没有统一标准。桩身完整性检测只是检测桩身材料、尺寸等方面的质量问题,而这种划分或多或少地依赖于承载力的达标与否。但是为了检测中有一个明确的结论,必须对桩基的完整性做出判定,这也是进行桩基低应变检测的目的所在。为了增强对缺陷判定的准确性,检测人员应加强实践,通过对标准桩以及各种缺陷桩的反复检测,掌握不同缺陷以及不同程度缺陷在波形图上表现的细微差异,从而使自己的判定结果客观而公证[3] 。

  3.桩基检测技术的发展
  3.1静载荷试验。
  桩基静载测试技术是随着桩基础在建筑设计中的使用越来越广泛而发展起来的。新中国成立以后,桩基静载测试技术就逐步发展起来。传统静载荷试验采用手动加压、人工操作、人工记录的方式进行。到了20世纪80年代以后,随着改革开放的脚步,基本建设规模的逐年加大,特别是灌注桩在工程上的广泛应用,我国的桩基静载测试技术也进入了一个全新的发展时期。至今,桩基静载试验作为一项方法成立,理论上无可争议的桩基检测技术。
  3.2低应变检测。
  20世纪80年代,以波动方程为基础的低应变法进入了快速发展期,各种低应变法在基础理论、机理、仪器研发、现场测试和信号处理技术、工程桩和模型桩验证研究、实践经验积累等方面,取得了许多有价值的成果。
  3.3高应变检测。
  我国的高应变动力试桩法研究是起于20世纪80年代中后期,到90年代初期已有相关的软硬件,实际应用效果已不弱于国外,在灌注桩检测桩基动测方面,国产仪器和软件业已达到国际先进水平,有的方面显示出中国特色。
  3.4声波透射法。
  混凝土灌注桩的声波透射法检测是在结构混凝土声学检测技术基础上发展起来的。到20世纪70年代,声波透射法开始用于检测混凝土灌注桩的完整性。
  3.5钻孔取芯法。
  20世纪80年代钻孔取芯法主要应用于钻孔灌注桩的检测,同时在技术条件成熟的地区也用在检测地下连续墙的施工质量。钻芯法是一种微破损或局部破损的检测方法,具有科学、直观、实用等特点。

  4.桩基检测的展望
  至今桩基动测技术远未成熟,随着桩基检测理论和实践的不断发展,建立桩土在动力作用下的力学机理及相关理论的,同时发展先进的测量技术和对测试信号的正确解释,桩基动测技术在工程中的应用将更加广泛。
  深基坑支护桩的检测,目前国内尚无明确规定。对于桩身质量可用动测法检测,对于其横向承载力没有可行的检测方法。用动测法测定支护桩的横向承载力是值得研究的课题。研制和改进孔底沉渣测定仪,控制和检测灌注桩孔壁泥皮厚度的设备,对提高施工阶段的检测水平具有重要意义。

参考文献:
[1]严武庆,张少宏.浅谈反射波法检测桩完整性应注意的问题[J]. 防渗技术,2001,(7)4:36-37.  
[2]杨兴潮.反射波法桩基完整性检测的基本原理[J]. 交通世界,2009,(19) :116-117.
[3]孙志峰.关于低应变反射波法测试桩基完整性的几点建议[J]. 四川建筑,2009,(39)1:71-72.