摘 要:未来的深基坑工程一定会越来越多,深度也会进一步加深,工程建设者均应该珍惜每一次实践的机会,尽力对设计施工工作做全面细致的分析总结,在做好数据、资料整理积累的同时,提出问题,解释问题,解决问题,争取有所创新,有所突破。 

关键词:高层建筑;深基坑支护;施工技术 
中图分类号: tu97 文献标识码: a 文章编号: 
一、深基坑支护结构设计、施工过程中存在的问题 
1.在深基坑支护结构设计中很难选择一个适宜的土体物理力参数 
深基坑支护结构的安全性能的好坏很大程度是受所能承受的土体压力大小影响的,但是在实际工程中由于地质情况变化无穷,存在很多的不确定性,这使得要选择一个适宜的土体物理力参数来精确计算实际土体压力,以目前的技术来看还是一个大难题,尤其内摩擦角、含水率和粘聚力这三个重要参数在深基坑开挖后更是一个可变值,这样就提高了准确计算支护结构实际受力的难度。除此之外,土体物理力学参数的选择还受支护结构形式及施工工艺等因素的影响。 
2.不能做到对基坑土体取样完全 
设计前对地基土层进行取样分析是深基坑支护结构设计的必要步骤。由于地质情况变化无穷,随机取得的土层样本不可能准确地反映土层的真实情况。故支护结构的设计并不能完全符合基坑的实际地质情况。 
3.不能全面地考虑基坑开挖后的空间效应 
大量的深基坑开挖实例表明:基坑的四周朝内侧发生水平位移,且常常是中间比两边大,这种情况使得深基坑边坡失稳,故深基坑开挖还存在一个空间的问题。 
4.理论计算受力与实际受力不符 
在很多实际工程中,设计人员按极限平衡理论来确定安全系数及设计计算支护结构,这虽然从理论上讲是绝对安全的,但这样会加大支护结构的建设成本,且不一定就完全适应工程;而有的工程虽然选择规范中较小的安全系数来设计支护结构,但却能满足实际工程的要求。 
二、施工特点 
1.建筑趋向高层化,基坑向大深度方向发展; 
2.基坑开挖面积大,长度与宽度有的达数百米,给支撑系统带来较大的难度; 
3.在软弱的土层中,基坑开挖会产生较大的位移和沉降,对周围建筑物、市政设施和地下管线产生严重威胁; 
4.深基坑施工工期长、场地狭窄,降雨、重物堆放等对基坑稳定性不利; 
5.在相邻场地的施工中,打桩、降水、挖土及基础浇注混凝土等工序相互制约影响,增加协调工作的难度; 
6.支护型式的多样性。迄今为止,支护型式已经发展到数十种。 
三、高层建筑深基坑支护安全施工技术 
为了实现高层建筑工程深基坑支护施工的安全,除了有合理的机构设计外,还需要施工过程中各方密切配合,按照施工设计而施工。应主要注意以下内容: 
1.施工前,必须完成降水排水工程,检查其满足达到预期要求后,方可进行深基坑的土方开挖工作。同时基坑内应在合理的位置布设排水沟和积水井,并及时抽出积水,保障深基坑工程不受积水的影响。在深基坑周围的地域应采取相应的防排水措施,避免地表水渗入基坑周围而流入基坑内。 
2.基坑开挖前,通过降水提高坑内土体的水平抗力,减少基坑的变形量。施工降水不宜过快,降水过程中应加强周边建筑物、地下管线和地表沉降的监测,同时在坑外地面设回灌井,必要时应采取回灌措施,确保周边建筑物安全。在基坑开挖施工中,发现监控数据接近或超过警戒值时,应立即分析原因,准确地找出施工过程中存在的问题及时调整施工步骤,采取相应的对策,便能有效控制基坑变形,确保基坑安全。 
3.为防止边坡失稳,施工前先清除基坑边堆土等荷载,防止由于荷载过大引起基坑坍塌等事故的发生。 
4.基坑开挖分层进行,从上到下逐层进行开挖,严禁超挖和掏底开挖,同时开挖过程要与支撑架设同步施工。开挖段的长度必须根据基坑深度和坡度合理确定,不宜过长。当基坑挖至设计标高后,必须马上浇筑垫层混凝土,进一步减小基坑变形值。底板混凝土必须在5 d~7 d内完成,相应结构层施工及时跟上,以建立永久的受力平衡体系,从根本上控制住基坑变形。 
5.在采用拱圈墙方案时,拱墙本身可采用水平分缝及垂直分缝的逆作拱墙方法施工,拱脚稳定性很重要,设计施工应予重视,挖土时应维持拱圈荷载对称,受力均衡。 
6.施工人员在清底、平整场地、修整坡面时,需要配合机械作业时,应保持在机械回转半径之外。如果在机械回转半径之内,则必须停止机械,待回转并制动好后,确认安全后方可进行施工。在深基坑的周边要设置必要的安全围护栏杆,并设立相应的安全警示标识,严禁向坑内抛掷物品。坑内必须设立安全通道,以便应对紧急情况下人员的安全疏离。 
7. 在离电缆线1m的范围内严禁进行土方机械运行。在机械运行过程中不得进行检修,在修整时,必须停机降到最低位置,悬空部应垫土。 
8.挖掘机施工时,应在机械本身性能的规定下作业,其最大开挖高度和深度不得超过机械本身。 
四、深基坑支护施工的结构类别 
高层建筑工程的发展,使得基坑的深度和体量不断得到增加,支护技术也不断得到改进和优化,目前,深基坑支护技术中常见的结构类别有以下几种。 
1.钢板桩支护 
钢板桩支护技术的施工相对简单,投资经济实惠的支护方法,因此在建筑深基坑支护时得到了广泛的应用。这种支护技术是属于连续支护,应用于基坑深度超过5米的支护施工中。钢板桩支护技术用到的主要材料是带锁口或钳口的热轧型钢材,将钢板结合起来建成钢板桩墙,用于挡土、水。钢板桩的截面为梯形,形状类似于u型钢。钢板一般长6m~9m,宽3m,厚25mm。施工支护时,应先定位,定位后用打桩机打出第一个定位桩,而后一正一反沿放线扣合,形成对基坑有效支护。但是由于钢板桩在施工过程中会影响周围环境,其使用情况也会受到一定的制约。 
2.深层搅拌水泥土桩支护 
深层搅拌支护是用水泥作为固化剂,将能进入土深层的搅拌机将水泥和地基土进行强制性拌和,使两者相互搭接,形成有效的物理化学反应后硬化、达到基坑支护墙的强度要求,这样形成的支护结构既可挡土又可隔水。对于粘土、淤泥、淤泥质土等,只要开挖深度不深,平面无论什么形状,这种深基坑支护技术均适用,施工经济。 
3.地下连续墙 
地下连续墙最主要的优点是整体刚度大、止水效果好,因此被广泛应用于地下水位以下的软粘土和砂土等各种不同的复杂施工环境和条件,在施工时需要将基坑底面以下的深层软土墙体插入很深的这种情况下,尤其适用。 
4.柱列式灌注桩排桩支护 
柱列式排桩支护是指利用适当的柱列式间隔形式来布置钢筋混凝土挖孔、钻孔灌注桩,用具有较好刚度的桩列式灌注桩来作挡土结构。这种排桩支护方式施工方便、造价低廉,效果明显,但由于浇筑后桩间的联系不紧,必须对浇筑大截面的连梁进行连接。同时为了保证地下水和土粒不从桩隙中流入深基坑内,还应高压注浆、设搅拌桩、旋喷桩,这就导致了其施工速度慢的缺点。 
5.土钉墙支护 
土钉墙支护是一种边开挖边铺设钢筋网的施工支护技术,它通过喷射混凝土,形成加筋土重力式挡墙结构,用于挡土。这种深基坑支护技术不适用于地下水以下或未经人工降水处理的土层,而适用于地下水以上,或经人工降水后的粘性土、杂填土。 
6.内支撑和锚杆 
内支撑和锚杆作为基坑墙体的主要支撑结构,刚度大、变形小的特点对于控制基坑变形,保障基坑稳定安全方面具有重要意义。它适用于较深基坑,或对环境要求高的地区,能有效控制墙体变形。 
7.旋喷桩墙支护 
旋喷桩墙支护是利用旋转喷嘴钻入钻杆的端部,在地基深入上提时将水泥固化剂喷入,形成水泥土桩的基坑支护技术,它将桩体相连形成支护结构挡墙,可在较窄地区施工。 
五、结束语 
高层建筑的发展,使得基坑深度和面积越来越大,施工也越来越复杂,支护难度越来越大,对深基坑支护的技术要求越来越高,因此在工程实践中必须不断总结,提高支护技术水平,满足高层建筑的需求。 
注:文章内所有公式及图表请用pdf形式查看。