摘  要:桥梁施工控制是确保桥梁施工宏观质量的关键. 其工艺性强、技术性高,质量控制受其他方面的影响和制约因素多.作者通过多年的施工总结及现场观察,对预应力混凝土桥梁施工的质量控制提出一些粗浅的认识,供参考。

关键词:预应力混凝土; 施工控制;施工工艺;措施
1   概述
预应力混凝土经过半个多世纪的发展并随着部分预应力概念的逐步成熟, 已经突破了混凝土不能受拉与开裂的约束,大大扩展了它的应用范围。目前预应力混凝土已成为国内外土建工程最主要的一种结构材料。我国预应力混凝土桥梁发展很快, 无论在桥型, 跨度以及施工方法与技术方面都有突破性发展, 不少预应力混凝土桥梁的修建技术已达到国际先进水平。
从我国已建成的预应力混凝土桥梁来看, 大多都采用40- 50 混凝土, 进而采用减水剂等添加剂制备塑性混凝土, 并发展了泵送混凝土工艺。随着桥梁跨度的增加, 为减少桥梁结构的自重, 混凝土逐渐向高强、轻质方向发展。我国目前在高强、轻质混凝土方面已经有所成就。
2   施工控制影响因素
2.1 结构参数
结构参数是控制中结构施工模拟分析的基本资料, 其准确性直接影响分析结果的准确性。结构参数主要包括: 结构构件截面尺寸、结构材料弹性模量、材料容重、材料热膨胀系数、施工荷载和预应力或索力。
2.2施工工艺
施工控制是为施工服务的, 反过来, 施工的好坏又直接影响控制目标的实现。除要求施工工艺必须符合控制要求外, 在施工控制中必须计入施工条件非理想化而带来的结构制作、安装等方面的误差, 使施工状态保持在控制之中。
2.3 结构计算分析模型
无论采用什么分析方法和手段, 总要对实际桥梁结构进行简化和建立计算模型, 这种简化式计算模型与实际情况之间存在的误差, 包括各种假定: 边界条件处理, 模型化的本身精度等。控制中需要在这个方面做大量工作, 必要时还要进行专门的试验研究, 使计算模型误差所差生的影响减到最低限度。
2.4 温度变化
温度变化对桥梁结构的受力与变形影响很大, 这种影响随温度的改变而改变, 在不同时刻的结构状态( 应力、应变) 进行量测, 如果施工控制中忽略了该项因素, 就必然难以得到结构的真实状态数据( 与控制理想状态比较) , 从而也难以保证控制的有效性, 所以, 必须考虑温度变化的影响。
2.5 材料收缩、徐变
对混凝土桥梁结构而言, 材料的收缩、徐变对结构内力、变形有较大的影响, 这主要是由于大跨径桥梁施工中混凝土普遍存在加载龄期小、各阶段龄期相差大等问题引起的, 控制中要予以认真研究, 以期采用合理的、符合实际的徐变参数和计算模型。
3   预应力混凝土的质量控制措施
3.1确保混凝土质量
混凝土应保证具有设计要求的强度、良好的和易性及泌水性, 且质量均匀性要好。影响混凝土质量的因素有配合比、搅拌、运输、浇注、振捣、养生等环节。其中混凝土配合比是控制其质量的最重要因素, 在满足其施工要求的情形下应尽量减少单位用水量, 相应地也减少单位水泥用量, 从而减少混凝土水化热, 减少由于混凝土的徐变与收缩而引起的预应力损失和施加预应力之前的收缩裂缝。此外, 采用现场试块测得的早期混凝土强度等级代替现场结构的实际混凝土强度, 也存在一定的问题。试验表明, 出现事故的结构最后验算时, 其实际强度均未达到现场测得的强度, 有时候甚至更低。
3.2重视预应力管道安装
预应力管道安装准确与否直接影响到梁体的受力情况与设计是否一致, 关系到桥梁施工质量, 是预应力施工中的重点。在管道安装过程中, 主要需加强对管道定位进行控制, 避免混凝土浇筑时出现管道上浮及漏浆现象。预应力管道安装施工、混凝土灌筑前, 要严格对以下要点进行控制: 管道位置是否正确、平顺性如何、有无漏浆处、是否严格密封等。
3.3 正确应用扁锚和扁锚连接器
扁锚多应用于结构截面尺寸受到限制或构造连接等特定条件下。然而近年来部分单位为了减小截面尺寸, 追求经济指标, 在预应力箱梁底板和板梁结构中都采用扁锚, 有的单位还申请专利、出标准图, 这是不可取的。由于扁锚的张拉工艺是采用逐根张拉, 整体张拉设备技术不成熟, 导致钢绞线受力不均匀。采用扁波纹管留孔, 扁孔空间很小, 孔道摩阻大, 特别是超长孔道采用一端张拉工艺, 问题更加严重。由于扁孔本身空间小, 孔道压浆困难, 无法做到孔道压浆饱满。建议箱梁底板、腹板、空心板梁等结构禁止采用扁锚。对于扁锚连接器的应用更要慎重, 尤其是5 孔和3 孔连接器, 由于设计构造不合理会导致偏心受力, 不宜推广使用。
3.4合理选择混凝土浇注后张拉时间
有的工程通过掺加早强剂, 提高混凝土早期强度, 一般浇注混凝土3 天后就开始张拉预应力, 这是不可取的。因为混凝土强度和弹性模量增长是不同步的, 强度增长快, 弹性模量增长慢, 早期混凝土变形大, 过早张拉预应力会使预应力损失增大, 导致桥梁承载力不足, 而出现众多裂缝病害。
3.5 张拉工艺质量控制
国内现浇大跨度预应力连续箱梁底板预应力束一般采用一端张拉的工艺。根据国内外相关规范规定: 跨度≥30m以上的预应力桥梁, 均要求采用两端对称张拉工艺, 才能保证跨中有效预应力和桥梁在恒载和活载作用下跨中所需抵抗弯矩的建立; 否则会导致跨中承载力不足, 而产生正截面裂缝。根据交通部专门调查资料, 已通车的公路桥梁中, 几乎都出现过由于张拉工艺不适合而产生大量裂缝的现象。
3.6 预防滑丝和断丝
滑丝指夹具在预应力张拉后, 夹片“咬不住”钢绞线和钢丝, 钢绞线和钢丝出现滑动, 达不到设计张拉值。断丝指张拉钢绞线和钢丝时, 夹片将其“咬断”, 即齿痕较深, 在夹片处断丝。为了预防滑丝和断丝超标, 应采取以下措施: 1.夹片的硬度除了检查出厂合格证外, 在现场应对其进行复验, 有条件的最好进行逐片复验; 2.钢绞线或钢丝的直径偏差、椭圆度、硬度指标应纳入检查内容, 如偏差超限, 质量不稳定, 应考虑更换钢绞线或钢丝的产品供应单位; 3.滑丝断丝若不超过规范允许数量, 可不予处理, 若整束或大量滑丝和断丝, 应将锚头取下, 检验并更换钢束重新张拉。
3.7 波纹管漏浆堵管的防治
波纹管漏浆堵管是指用通孔器检查预应力索孔道时发现管内有堵塞或在混凝土浇筑前, 索管内先置的预应力索抽拉不动。波纹管漏浆堵管产生的可能原因有: 1.波纹管接头处脱开漏浆, 流入孔道; 2.波纹管破损漏浆或在工地存放、施工过程中被踩、挤、压瘪。波纹管漏浆堵管的防治措施有: 1.使用波纹管作为索管的, 管材必须具备足够的承压强度和刚度,破损管材不得使用; 2.波纹管连接应根据其号数, 选用配套的波纹管, 连接时两端波纹管必须拧至相当的位置, 然后用胶布或防水布将接头缝隙封闭严密; 3.浇筑混凝土开始后, 在其初凝前, 应用通孔器检查并不时拉动疏通, 如采用预置预应力索的措施, 则应不时拉动预应力钢绞线或钢丝束, 在混凝土浇筑结束后再进行一次通孔检查, 如发现堵孔, 应及时疏通; 4.确认堵孔严重无法疏通的, 应设法查准堵孔的位置, 凿开该处混凝土疏通索道。
3.8严格预应力孔道压浆工序
预应力孔道压浆有两个重要作用: 一是保护预应力筋不被锈蚀; 二是保证预力筋和结构共同工作; 然而实际工程中预应力孔道的压浆不饱满、不密实、漏浆和漏灌现象十分普遍, 已成为预应力结构的通病。其主要原因除了施工单位对孔道压浆工序不够重视外, 目前的压浆工艺、留孔质量、浆体配置等也存在一定问题, 特别是浆体的水灰比, 较规范的规定值( 0.4- 0.45) 偏大。采用规范规定的水灰比后孔道浆体泌水, 孔道不易饱满和密实。为了防治孔道压浆不密实, 可采取以下措施: 1.孔道在灌浆前应以高压水冲洗, 除去杂物, 疏通和湿润整个管道; 2.配制高质量的浆液, 选用的水泥可用强度等级不低于325MPa 的普通硅酸盐水泥, 灰浆水灰比宜控制在0.1- 0.45, 泌水率宜小于2%, 最大不应超过3%, 灰浆应具有良好的流动性并不易离析, 可掺入适量的减水剂和微膨胀剂, 但不得使用对管道和预应力索有腐蚀作用的外掺剂, 掺量和配方应通过试验确定; 3.管道及排气口应疏通, 压浆时应从低处往高处压, 待高处的孔眼冒溢浓浆后, 堵住排气口持荷继续加压, 待泌水流光后, 再塞住孔口; 4.对孔道较长或第一次压浆不够理想的, 可进行二次压浆, 二次压浆应在第一次压浆初凝后进行。
4   结语
为适应我国经济的发展, 缓解交通问题给人们生产生活带来的不便, 预应力混凝土结构的应用范围将更加广阔, 因此必须加强提高预应力技术水平的科研工作。预应力混凝土桥梁预制安装施工质量直接影响桥梁质量、使用寿命和营运安全, 务必引起广大从业人员的高度重视, 切实抓好每道工序、每个环节的质量控制, 确保桥梁梁板预制安装工程的质量。