以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。


1.完成整体参数的正确设定 计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。
 
(1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。
(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。
(3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。
 上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。
2.确定整体结构的合理性 整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。
(1)周期比是控制结构扭转效应的重要指标。主要为控制结构的扭转效应,减小扭转对结构带来不利影响(此时要注意:第一、二震型在高层建筑中是不能以扭转为主);它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。

规范条文:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。
设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列。同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。


 

对于通常的规则单塔楼结构,如下验算周期比:
1)根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型        
2)通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T1  
3)对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。再考察下一个次长周期。
4)考察第一平动周期的基底剪力比是否为最大
5)计算Tt/T1,看是否超过0.9 (0.85)
 
周期比控制什么? 如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性
 
周期比不满足要求,如何调整?如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周期比不 满足要求 说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。
 
F验算周期比的目的,主要为控制结构在罕遇大震下的扭转效应。
F多塔结构周期比:对于多塔楼结构,不能直接按上面的方法验算。如果上部没有连接,应该各个塔楼分别计算并分别验算,如果上部有连接,验算方法尚不清楚。
F体育场馆、空旷结构和特殊的工业建筑,没有特殊要求的,一般不需要控制周期比。
F当高层建筑楼层开洞口较复杂,或为错层结构时,结构往往会产生局部振动,此时应选择“强制刚性楼板假定”来计算结构的周期比。以过滤局部振动产生的周期。
对于比较正常的工程设计,其不考虑折减的计算自振周期大概在下列范围 中。
框架结构: T1=(0.12.--0.15)n
框架--剪力墙和框架--筒体结构: T1=(0.06--0.12)n
剪力墙结构和筒中结构:  T1=(0.04--0.06)n  (式中 n为建筑层数)
第二及第三周期近似为:
                T2=(1/3--1/5)T1
                T3=(1/5--1/7)T1
如果计算结果偏离上述数值太远,应考虑工程中截面是否太大、太小,剪力墙数量是否合理,应适当进行调整。反之,如果截面尺寸、结构布置都正确,无特殊情况而 偏离太远,则应检查输入数据是否有错误。以上判断是根据平移振动振型分解方法来提出的,考虑扭转耦连振动时,情况复杂很多,首先应挑出与平移振动对应振型 来进行上述比教,至于扭转周期的合理数值,由于经验不足尚难提出合理的数值。
振型曲线 在正常的计算下,对于比较均匀的结构,振型曲线应是比较连续光滑的曲线附图一),不应有大进大出,大的凸凹曲折。
第一振型无零点;第二振型在(0.7-0.8)H处;第三振型分别在(0.4-0.5)及(0.8-0.9)H处。
 


 
(2)位移比(层间位移比)是控制结构平面不规则性的重要指标。主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响; 见抗规3.4.2

规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
程序处理:针对此条,程序中对每一层都计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,用户可以一目了然地判断是否满足规范。需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,位移比的限值:是根据刚性楼板假定的条件下确定的,其平均位移的计算方法,也基于“刚性楼板假定”。如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。此外,位移比的大小是判断结构是否规则的重要依据,对选择偶然偏心,单向地震,双向地震下的位移比,设计人员应正确选用。
F 控制位移比的计算模型: 按照规范要求的定义,位移比表示为“最大位移/平均位移”,而平均位移表示为“(最大位移+最小位移)/2”,其中的关键是“最小位移”,当楼层中产生0 位移节点,则最小位移一定为0,从而造成平均位移为最大位移的一半,位移比为2。则失去了位移比这个结构特征参数的参考意义,所以计算位移比时,如果楼层 中产生“弹性节点”,应选择“强制刚性楼板假定”。
规范要求:高规4.3.5条,应在质量偶然偏心的条件下,考察结构楼层位移比的情况。
层间位移角:程序采用“最大柱(墙)间位移角”作为楼层的层间位移角,此时可以“不考虑偶然偏心”的计算条件。
复杂结构,如坡屋顶层、体育馆、看台、工业建筑等,这些结构或者柱、墙不在同一标高,或者本层根本没有楼板,此时如果采用“强制刚性楼板假定”,结构分析严 重失真,位移比也没有意义。所以这类结构可以通过位移的“详细输出”或观察结构的变形示意图,来考察结构的扭转效应。
对于错层结构或带有夹层的结构,这类结构总是伴有大量的越层柱,当选择“强制刚性楼板假定”后,越层柱将受到楼层的约束,如果越层柱很多,计算失真。
总之,结构位移特征的计算模型之合理性,应根据结构的实际出发,对复杂结构应采用多种手段。
 


(3)刚度比是控制结构竖向不规则的重要指标。(在WMASS.out中)主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,根据《抗震规范》和《高规》的要求:
见抗规3.4.2

新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2。
新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。
新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。
新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D的规定。
FE.0.1底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。
FE.0.2底部为2~5层大空间的部分框支剪力墙结构,其转换层下部框架-剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。
软件提供了三种刚度比的计算方式,分别是剪切刚度,剪弯刚度和地震力与相应的层间位移比。正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键:1)剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;2)剪弯刚度主要用于底部大空间为多层的转换结构;3)地震力与层间位移比是执行《抗震规范》第3.4.2条和《高规》4.3.5条的相关规定,绝大多数工程都可以用此法计算刚度比,这也是软件的缺省方式。


 
层刚度比的计算方法:

F高规附录E.0.1建议的方法——剪切刚度
Ki = Gi Ai / hi
F高规附录E.0.2建议的方法——剪弯刚度
Ki = Fi / Δi  
F抗震规范的3.4.2和3.4.3条文说明中建议的计算方法:
Ki = Vi / Δui
层刚度比的控制方法:
新规范要求结构各层之间的刚度比,并根据刚度比对地震力进行放大,所以刚度比的合理计算很重要。
新规范对结构的层刚度有明确的要求,在判断楼层是否为薄弱层、地下室是否能作为嵌固端、转换层刚度是否满足要求等等,都要求有层刚度作为依据,所以层刚度计算的准确性就比较重要。程序提供了三种计算方法:
Ø1。楼层剪切刚度
Ø2。单层加单位力的楼层剪弯刚度
Ø3。楼层平均剪力与平均层间位移比值的层刚度
        三种计算方法有差异是正常的,可以根据需要选择。
Ø只要计算地震作用,一般应选择第 3 种层刚度算法
Ø不计算地震作用,对于多层结构可以选择剪切层刚度算法,高层结构可以选择剪弯层刚度
Ø不计算地震作用,对于有斜支撑的钢结构可以选择剪弯层刚度算法
   转换层结构按照“高规”要求计算转换层上下几层的层刚度比,一般取转换层上下等高的层数计算。
   层刚度作为该层是否为薄弱层的重要指标之一,对结构的薄弱层,规范要求其地震剪力放大1.15,这里程序将由用户自行控制。
     当采用第3种层刚度的计算方式时,如果结构平面中的洞口较多,这样会造成楼层平均位移的计算误差增加,此时应选择“强制刚性楼板假定”来计算层刚度。选择剪切、剪弯层刚度时,程序默认楼层为刚性楼板。
层刚度比即结构必须要有层的概念,但是,对于一些复杂结构,如坡屋顶层、体育馆、看台、工业建筑等,这些结构或者柱、墙不在同一标高,或者本层根本没有楼板,所以在设计时,可以不考虑这类结构所计算的层刚度特性。
对于大底盘多塔结构,或上联多塔结构,在多塔和单塔交接层之间的层刚度比是没有意义的。如大底盘处因为离塔较远的构件,对该塔的层刚度没有贡献,所以遇到多塔结构时,层刚度的计算应该把底盘切开,只能保留与该塔2到3跨的底盘结构。
将各层位移连成位移曲线,应具有以下特征:
剪力墙结构的位移曲线具有悬臂弯曲梁的特怔,位移越往上增大越快,成外弯形曲线
框架结构具有剪切梁的特怔,越往上增长越慢,成内收形曲线
框架--剪力墙和框架--筒体结构处于两者之间,为反S形曲线,接近一直线
在刚度较均匀的情况下,位移曲线应圆曲光滑,无突然的凸凹变化和折点。
 


 
(4)层间受剪承载力之比也是控制结构竖向不规则的重要指标。其限值可参考《抗震规范》和《高规》的有关规定。
(5)刚重比是结构刚度与重力荷载之比。高规(5.4.4)它是主要为控制结构整体的稳定性,以免结构产生滑移和倾覆的重要因素,也是影响重力二阶效的主要参数。该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。
1、剪力墙结构、框架—剪力墙结构、筒体结构:
刚重比大于等于14,符合稳定要求;刚重比大于等于2.7,不考虑重力二阶效应。
2、框架结构
刚重比大于等于10,符合稳定要求;刚重比大于等于20,不考虑重力二阶效应。
(6)剪重比是抗震设计中非常重要的参数。主要为控制各楼层最小地震剪力,确保结构安全性;规范之所以规定剪重比,主要是因为长期作用下,地震影响系数下降较快,由此计算出来的水平地震作用下的结构效应可能太小。而对于长周期结构,地震动态作用下的地面加速度和位移可能对结构具有更大的破坏作用,但采用振型分解法时无法对此作出准确的计算。因此,出于安全考虑,规范规定了各楼层水平地震力的最小值,该值如果不满足要求,则说明结构有可能出现比较明显的薄弱部位,必须进行调整。
 
见抗规5.2.5 、高规3.3.13

剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系 数取0.2amax”,由此可据《抗规》表5.1.4-1推算出各地震列度下的剪力系数:9度为0.2*0.32=0.064,8度为 0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为 0.2*0.04=0.008。在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。
剪重比主要是考虑基本周期大于3s的长周期结构。地震对于此类结构的破坏相比短周期的结 构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪 重比的原因。另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的 1.15倍。在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调 整的信息,多看看这一信息,对剪重比的理解会更深刻.
注意剪重比和剪压比是两个截然不同的概念,不可混淆。剪重比是对整个结构体系一个宏观概 念,而剪压比是针对单个构件的一个控制指标(类似于剪跨比)。一般的转换梁的截面尺寸是由剪压比计算确定,以避免脆性破坏和具有合适的含箍率.剪压比计算 公式:μv=Vmax/fcbho.其中Vmax为转换梁支座截面处最大组合剪力设计值,fc为转换梁混凝土抗压强度设计值,fc为转换梁的宽度,ho为 转换梁截面的有效高度.
关于有没有上限的问题,首先要明白在地震作用下影响建筑水平地震剪力的内在原因是什么,这个明白了此问题也就了解了这 个原因就是结构刚度,结构刚度越大产生的剪力就越大,有些建筑不满足剪重比要求多是因为建筑过柔的缘故。结构刚度的大小可参考层间位移比,只要这个比值合适就不用担心建重比太大的问题
 
层间位移比在框剪结构中,按经验取值为规范的2倍.根据李国胜编著的一本书,6度时可取7度时相应的1/2剪重比过大过小都需要检查。过大,说明底部剪力过大,应检查输入信息,是否填入信息有误,或者剪力墙数量过多,结构太刚。不论剪力重力比过大过小,都要找出原 因,将其控制在适宜的范围内,其计算的位移,内力,配筋才有义。
转剪重比不满足时的调整方法:
1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:
a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;
b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;
c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
   除以上计算分析以外,设计软件还会按照规范的要求对整体结构地震作用进行调整,如最小地震剪力调整、特殊结构地震作用下内力调整、0.2Q0调整、强柱弱梁与强剪弱弯调整等等。


(7)有效质量比:主要为控制结构的地震力是否全计算出来。 选择足够多的振型数,保证有效质量大于90%。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

 
3 对单构件作优化设计 前几步主要是对结构整体合理性的计算和调整,这一步则主要进行结构单个构件内力和配筋计算,包括梁,柱,剪力墙轴压比计算,构件截面优化设计等。
(1)软件对混凝土梁计算显示超筋信息有以下情况:1)当梁的弯矩设计值M大于梁的极限承载弯矩Mu时,提示超筋;2)规范对混凝土受压区高度限制:
四级及非抗震:ξ≤ξb
二、三级:ξ≤0.35(   计算时取AS ’=0.3 AS    )
一级:    ξ≤0.25(   计算时取AS ’=0.5 AS    )
 当ξ不满足以上要求时,程序提示超筋;3)《抗震规范》要求梁端纵向受拉钢筋的最大配筋率2.5%,当大于此值时,提示超筋;4)混凝土梁斜截面计算要满足最小截面的要求,如不满足则提示超筋。
(2)剪力墙超筋分三种情况:1)剪力墙暗柱超筋:软件给出的暗柱最大配筋率是按照4%控制的,而各规范均要求剪力墙主筋的配筋面积以边缘构件方式给出,没有最大配筋率。所以程序给出的剪力墙超筋是警告信息,设计人员可以酌情考虑;2)剪力墙水平筋超筋则说明该结构抗剪不够,应予以调整;3)剪力墙连梁超筋大多数情况下是在水平地震力作用下抗剪不够。规范中规定允许对剪力墙连梁刚度进行折减,折减后的剪力墙连梁在地震作用下基本上都会出现塑性变形,即连梁开裂。设计人员在进行剪力墙连梁设计时,还应考虑其配筋是否满足正常状态下极限承载力的要求。
(3)柱轴压比计算:柱轴压比的计算在《高规》和《抗震规范》中的规定并不完全一样,《抗震规范》第6.3.7条规定,计算轴压比的柱轴力设计值既包括地震组合,也包括非地震组合,而《高规》第6.4.2条规定,计算轴压比的柱轴力设计值仅考虑地震作用组合下的柱轴力。软件在计算柱轴压比时,当工程考虑地震作用,程序仅取地震作用组合下的的柱轴力设计值计算;当该工程不考虑地震作用时,程序才取非地震作用组合下的柱轴力设计值计算。因此设计人员会发现,对于同一个工程,计算地震力和不计算地震力其柱轴压比结果会不一样。
(4)剪力墙轴压比计算:为了控制在地震力作用下结构的延性,新的《高规》和《抗震规范》对剪力墙均提出了轴压比的计算要求。需要指出的是,软件在计算断指剪力墙轴压比时,是按单向计算的,这与《高规》中规定的短肢剪力墙轴压比按双向计算有所不同,设计人员可以酌情考虑。
(5)构件截面优化设计:计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件优化设计,使构件在保证受力要求的德条件下截面的大小和形状合理,并节省材料。但需要注意的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期、位移、地震力等一系列参数产生影响,不可盲目减小构件截面尺寸,使结构整体安全性降低。
4. 满足规范抗震措施的要求    在施工图设计阶段,还必须满足规范规定的抗震措施要求。《混凝土规范》、《高规》和《抗震规范》对结构的构造提出了非常详尽的规定,这些措施是很多震害调查和抗震设计经验的总结,也是保证结构安全的最后一道防线,设计人员不可麻痹大意。
(1)设计软件进行施工图配筋计算时,要求输入合理的归并系数、支座方式、钢筋选筋库等,如一次计算结果不满意,要进行多次试算和调整。
(2)生成施工图以前,要认真输入出图参数,如梁柱钢筋最小直径、框架顶角处配筋方式、梁挑耳形式、柱纵筋搭接方式,箍筋形式,钢筋放大系数等,以便生成符合需要的施工图。软件可以根据允许裂缝宽度自动选筋,还可以考虑支座宽度对裂缝宽度的影响。
(3)施工图生成以后,设计人员还应仔细验证各特殊或薄弱部位构件的最小纵筋直径、最小配筋率、最小配箍率、箍筋加密区长度、钢筋搭接锚固长度、配筋方式等是否满足规范规定的抗震措施要求。规范这一部分的要求往往是以黑体字写出,属于强制执行条文,万万不可以掉以轻心。
(4)最后设计人员还应根据工程的实际情况,对计算机生成的配筋结果作合理性审核,如钢筋排数、直径、架构等,如不符合工程需要或不便于施工,还要做最后的调整计算。