钢结构设计简单步骤和设计思路
(一) 判断结构是否适合用钢结构
钢结构通常用于高层、大跨度、体型复杂、荷载或吊车起重量大、有较大振动、要求能活动或经常装拆的结构。直观的说:大厦、体育馆、歌剧院、大桥、电视塔、雕塑、仓棚、工厂、住宅、山地建筑和临时建筑等。这是和钢结构自身的特点相一致的。
(二) 结构选型与结构布置
结构选型及布置是对结构的定性,由于其涉及广泛,应该在经验丰富的工程师指导下进行。此处仅简单介绍. 详请参考相关专业书籍.
在钢结构设计的整个过程中都应该被强调的是"概念设计",它在结构选型与布置阶段尤其重要. 对一些难以作出精确理性分析或规范未规定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来确定控制结构的布置及细部构造措施。 在早期迅速、有效地进行构思、比较与选择,所得结构方案往往易于手算、力学行为清晰、定性正确,并可避免结构分析阶段不必要的繁琐运算。同时,它也是判断计算机内力分析输出数据可靠与否的主要依据。
林同炎教授在《结构概念和体系》一书中介绍了用整体概念来规划结构方案的方法,以及结构总体系和个分体系间的相互力学关系和简化近似设计方法。
钢结构通常有框架、平面桁架、网架(壳)、索膜、轻钢、塔桅等结构形式。
其理论与技术大都成熟。亦有部分难题没有解决,或没有简单实用的设计方法,比如网壳的稳定等。
结构选型时,应考虑不同结构形式的特点。在工业厂房中,当有较大悬挂荷载或大范围移动荷载,就可考虑放弃门式刚架而采用网架。基本雪压大的地区,屋面曲线应有利于积雪滑落(切线50度外不需考虑雪载 ),如亚东水泥厂石灰石仓棚采用三心圆网壳,总雪载和坡屋面相比释放近一半。降雨量大的地区相似考虑。建筑允许时,在框架中布置支撑会比简单的节点刚接的框架有更好的经济性。而屋面覆盖跨度较大的建筑中,可选择构件受拉为主的悬索或索膜结构体系。高层钢结构设计中,常采用钢混凝土组合结构,在地震烈度高或很不规则的高层中,不应单纯为了经济去选择不利抗震的核心筒加外框的形式。宜选择周边巨型SRC柱,核心为支撑框架的结构体系。我国半数以上的此类高层为前者,对抗震不利。
结构的布置要根据体系特征,荷载分布情况及性质等综合考虑.一般的说要刚度均匀.力学模型清晰.尽可能限制大荷载或移动荷载的影响范围,使其以最直接的线路传递到基础. 柱间抗侧支撑的分布应均匀.其形心要尽量靠近侧向力(风、震)的作用线. 否则应考虑结构的扭转. 结构的抗侧应有多道防线. 比如有支撑框架结构,柱子至少应能单独承受1/4的总水平力.
框架结构的楼层平面次梁的布置,有时可以调整其荷载传递方向以满足不同的要求。通常为了减小截面沿短向布置次梁,但是这会使主梁截面加大,减少了楼层净高,顶层边柱也有时会吃不消,此时把次梁支撑在较短的主梁上可以牺牲次梁保住主梁和柱子.
(三) 预估截面
结构布置结束后,需对构件截面作初步估算。主要是梁柱和支撑等的断面形状与尺寸的假定。
钢梁可选择槽钢、轧制或焊接H型钢截面等。根据荷载与支座情况,其截面高度通常在跨度的1/20~1/50之间选择。翼缘宽度根据梁间侧向支撑的间距按l/b限值确定时,可回避钢梁的整体稳定的复杂计算,这种方法很受欢迎。 确定了截面高度和翼缘宽度后,其板件厚度可按规范中局部稳定的构造规定预估。
柱截面按长细比预估. 通常50<λ<150, 简单选择值在80附近。根据轴心受压、双向受弯或单向受弯的不同,可选择钢管或H型钢截面等.
对应不同的结构,规范对截面的构造要求有很大的不同,如钢结构所特有的组成构件的板件的局部稳定问题,在普钢规范和轻钢规范中的限值有很大的区别。
除此之外,构件截面形式的选择没有固定的要求,结构工程师应该根据构件的受力情况,合理的选择安全经济美观的截面。
(四) 结构分析
目前钢结构实际设计中,结构分析通常为线弹性分析,条件允许时考虑P-Δ,p-δ.
新近的一些有限元软件可以部分考虑几何非线性及钢材的弹塑性能.这为更精确的分析结构提供了条件。并不是所有的结构都需要使用软件:
典型结构可查力学手册之类的工具书直接获得内力和变形.
简单结构通过手算进行分析.
复杂结构才需要建模运行程序并做详细的结构分析.
(五) 工程判定
要正确使用结构软件,还应对其输出结果的做"工程判定"。比如,评估各向周期、总剪力、变形特征等。根据"工程判定"选择修改模型重新分析,还是修正计算结果.
不同的软件会有不同的适用条件.初学者应充分明了.此外,工程设计中的计算和精确的力学计算本身常有一定距离, 为了获得实用的设计方法,有时会用误差较大的假定, 但对这种误差, 会通过"适用条件、概念及构造"的方式来保证结构的安全. 钢结构设计中,"适用条件、概念及构造"是比定量计算更重要的内容.
工程师们过分信任与依赖结构软件有可能带来结构灾难,注重概念设计、工程判定和构造措施有助于避免这种灾难.
(六) 构件设计
构件设计首先是材料的选择. 比较常用的是Q235和Q345. 当强度起控制作用时,可选择Q345; 稳定控制时,宜使用Q235.通常主结构使用单一钢种以便于工程管理. 经济考虑,也可以选择不同强度钢材的焊接组合截面(翼缘Q345,腹板Q235). 另外,焊接结构宜选择Q235B或Q345B。
当前的结构软件,都提供截面验算的后处理功能。部分软件可以将不通过的构件,从给定的截面库里选择加大一级自动重新验算,直至通过,如sap2000等。这是常说的截面优化设计功能之一,它减少了很多工作量。 但是,我们至少应注意两点:
1.软件在做构件(主要是柱)的截面验算时,计算长度系数的取定有时会不符合规范的规定.目前所有的程序都不能完全解决这个问题。所以,尤其对于节点连接情况复杂或变截面的构件,我们应该逐个检查.
2.当上面第(三)条中预估的截面不满足时,加大截面应该分两种情况区别对待。
(1) 强度不满足,通常加大组成截面的板件厚度,其中,抗弯不满足加大翼缘厚度,抗剪不满足加大腹板厚度。
(2) 变形超限,通常不应加大板件厚度而应考虑加大截面的高度,否则会很不经济。
使用软件的前述自动加大截面的优化设计功能,很难考虑上述强度与刚度的区分,实际上,除常用于网架设计外,其他结构形式常常并不合适。
(七) 节点设计
连接节点的设计是钢结构设计中重要的内容之一.在结构分析前,就应该对节点的形式有充分思考与确定.有时出现的一种情况是,最终设计的节点与结构分析模型中使用的形式不完全一致,如果你不能确信这种不一致带来的偏差差在工程许可范围内(5%),就必须避免。 按传力特性不同,节点分刚接,铰接和半刚接. 初学者宜选择可以简单定量分析的前两者.常用的参考书[2]有丰富的推荐的节点做法及计算公式.
连接的不同对结构影响甚大.比如,有的刚接节点虽然承受弯矩没有问题,但会产生较大转动, 不符合结构分析中的假定. 会导致实际工程变形大于计算数据等的不利结果.
连接节点有等强设计和实际受力设计两种常用的方法, 初学者可偏安全选用前者.设计手册[2]中通常有焊缝及螺栓连接的表格等供设计者查用,比较方便. 也可以使用结构软件的后处理部分来自动完成.
具体设计主要包括以下内容:
1.焊接: 对焊接焊缝的尺寸及形式等,规范有强制规定,应严格遵守. 焊条的选用应和被连接金属材质适应.E43对应Q235,E50对应Q345. Q235与Q345连接时,应该选择低强度的E43,而不是E50.
焊接设计中不得任意加大焊缝. 焊缝的重心应尽量与被连接构件重心接近.其他详细内容可查规范关于焊缝构造方面的规定.
2.栓接:
铆接形式,在建筑工程中,现已很少采用.
普通螺栓抗剪性能差, 可在次要结构部位使用.
高强螺栓,使用日益广泛.常用8.8s和10.9s两个强度等级.根据受力特点分承压型和摩擦型.两者计算方法不同. 高强螺栓最小规格M12. 常用M16~M30. 超大规格的螺栓性能不稳定,应慎重使用。
自攻螺丝用于板材与薄壁型钢间的次要连接. 在低层墙板式住宅中也常用于主结构的连接. 难以解决的是自攻过程中防腐层的破坏问题。
3.连接板: 需验算栓孔削弱处的净截面抗剪等. 连接板厚度可简单取为梁腹板厚度加4mm,则除短梁或有较大集中荷载的梁外,常不需验算抗剪。
4.梁腹板: 应验算栓孔处腹板的净截面抗剪.承压型高强螺栓连接还需验算孔壁局部承压.
5.节点设计必须考虑安装螺栓、现场焊接等的施工空间及构件吊装顺序等。构件运到现场无法安装是初学者长犯的错误。此外,还应尽可能使工人能方便的进行现场定位与临时固定。
6.节点设计还应考虑制造厂的工艺水平. 比如钢管连接节点的相贯线的切口可能需要数控机床等设备才能完成.
(八) 图纸编制
钢结构设计出图分设计图和施工详图两阶段,设计图由设计单位提供,施工详图通常由钢结构制造公司根据设计图编制,有时也会由设计单位代为编制。由于近年钢结构项目增多和设计院钢结构工程师缺乏的矛盾,有设计能力的钢结构公司参与设计图编制的情况也很普遍。
1.设计图: 是提供制造厂编制施工详图的依据. 深度及内容应完整但不冗余. 在设计图中,对于设计依据、荷载资料(包括地震作用)、技术数据、材料选用及材质要求、设计要求(包括制造和安装、焊缝质量检验的等级、涂装及运输等)、结构布置、构件截面选用以及结构的主要节点构造等均应表示清楚,以利于施工详图的顺利编制,并能正确体现设计的意图。主要材料应列表表示。
2.施工详图:又称加工图或放样图等.深度须能满足车间直接制造加工.不完全相同的另构件单元须单独绘制表达,并应附有详尽的材料表.
设计图及施工详图的内容表达方法及出图深度的控制,目前比较混乱,各个设计单位之间及其与钢结构公司之间不尽相同。 初学者可参考他人的优秀设计并参考相关的工具书[3],并依据规范规定编制
钢结构设计常用规范
(九)轻钢结构计算
轻钢结构计算特点比较多,我罗列了一下大概有十个方面,拿出来供大家参考。
1、荷载计算。竖向荷载在算檩条时,按实际值取用,但活荷载传钢梁时,因跨度大,检修荷载不会满载,一般要乘以折减系数0.6左右。
2、风荷载取值。一般不小于1.5倍的当地基本风压值。
3、檩条计算。不但要计算正压力,还要考虑局部风荷载引起的负压力、扭力。
4、柱强度与稳定计算。基本同普通钢结构,仅截面计算同有效截面。
5、梁杆件计算。与普通钢结构比较改变较大,剪力由纯腹板计算,弯矩以翼缘和部分腹板承担。
6、梁柱腹板的局部稳定计算。门式刚架和轻质屋面梁的工字型截面构件,受压翼缘板自由外伸宽度b与其厚度t之比,不应超过15 ,腹板计算高度h0与其厚度tw之比不应超过下列数值:柱h0/tww≤250 梁 h0/tww≤300 。
7、梁的侧向支撑计算。轻钢结构的侧向支撑是以隅撑的形式出现的,而遇撑作为支撑杆,其自身必须具有一定强度,隅撑强度一般按轴心受压构件计算,公式为:N= 。其中:Af――实腹梁受压翼缘的截面面积;f――实腹梁钢材强度设计值;fy――实腹梁钢材的屈服值;θ――隅撑与檩条轴线的夹角;n――隅撑的斜杆数。
8、钢梁的连接点计算。与普通钢结构有所不同,一般是采用对接方式,连接螺栓的计算,在大多数情况下,不采用平均应力法,而采用工字钢梁上下翼缘各自受力的特点分别进行计算。节点板厚度按下式计算:tp≥ ,其中b――端板宽度;f――端板钢材的抗弯强度设计值;Nt――一个螺栓的最大拉力。
10、轻钢结构支撑设计。与普通钢结构设计也不一样,轻钢支撑为柔性水平十字交叉圆钢支撑,用特制的零件连于梁柱腹板,它的布置除在端跨的第二开间外,还每隔60米(或五个开间)设一道。
(一) 一般规范
《钢结构设计规范》 (GBJ 17-88)
《冷弯薄壁型钢结构技术规范》(GBJ18-87)
《建筑钢结构焊接规程》(JGJ81-91)
《高强度螺栓设计、施工及验收规程》
《钢结构加固技术规范》(CECS77:96)中国工程建设标准化协会
(二) 专门规范
《高层民用建筑钢结构技术规程》(JGJ 99-98)
《高耸结构设计规范》(GBJ 135-90)
《门式刚架轻型房屋钢结构技术规程》(CECS 102:98)
《网架结构设计与施工规定》(JGJ 7-91)
《压型钢板拱壳结构技术规程》
(三) 组合结构规范
《钢-混凝土组合结构设计规程》(DL/T 5085-1999)国家经济贸易委员会
《钢骨混凝土结构设计规程》(YB9082-97)冶金工业部
《钢管混凝土结构设计与施工规程》(CECS28:90)中国工程建设标准化协会
(四) 其他规范
《上海地方标准 轻型钢结构设计规程》(DBJ 08-68-97)
《上海地方标准 高层钢结构设计暂行规定》(DBJ 08-32-92)
《上海地方标准 建筑钢结构防火技术规程》(DG/TJ 08-008
钢结构设计常用专业图集、书籍及杂志
(一) 图集
1.轻型钢结构厂房门式刚架(2000浙G26) 已获批准使用。主编单位:机械工业部第二设计研究院 协编单位:杭州大地网架制造有限公司 0571-2831830
2.新型屋面梯形钢屋架(01SG515) 试用图 北京交通大学勘察设计研究院 已获批准使用。
3.门式刚架钢结构体系(一) [01SG518(一)] 该图集为门式刚架钢结构体系的第一分册---单跨无吊车门式刚架,适用于单层厂房、展览厅、仓库、体育建筑等。其包括的门式刚架的跨度为:12m、15m、18m、21m、24m、27m、30m、33m、33m、36m,共十种;根据不同的跨度选用了不同的柱距、肩高和坡度,其中柱距为:6m、7.5m 编制单位:中国建筑标准设计研究所 编制日期:2000 (编制中)
4.高层民用建筑钢结构构造体系(01SG519) 编制单位:中国建筑标准设计研究所 编制日期:2000 (编制中)
(二) 工具书
1.罗邦富,魏明钟,沈祖炎,陈明辉.钢结构设计手册(第二版).中国建筑工业出版社,1989
有传统钢结构方面的丰富资料. 另有同名上下册较新版本.
2.李和华.钢结构连接节点设计手册.中国建筑工业出版社,1992
有平面屋盖、网架和多高层等的钢结构节点的详细设计内容。非常实用的一本工具书.
3.喻立安,陶龙孙等.建筑结构设计施工图集---钢结构.中国建筑工业出版社,1995
该书主要面向初学者,包含多个实例图. 有建筑钢结构设计图和施工详图编制方法。是对国家制图规范的补充。
4.建筑构造资料集(下册).中国建筑工业出版社,1990
虽然是一本出版比较早的书,但其中的很多资料仍很宝贵。
5.汪一骏.轻型钢结构设计指南(实例与图集).中国建筑工业出版社,2000
6.建筑结构静力计算手册.中国建筑工业出版社,1998
典型的结构不必建模跑程序,可查表获得内力与变形。
7.建筑五金手册
(三) 参考书
8.魏明钟.钢结构设计新规范应用讲评.中国建筑工业出版社,1991
9.陈绍蕃.钢结构稳定设计指南.中国建筑工业出版社,1996
10.尹德钰,刘善维,钱若军.网壳结构设计.中国建筑工业出版社,1996
11.高层钢结构建筑设计资料集.机械工业出版社,1999
12.韩林海.钢管混凝土结构.科学出版社,2000
13, 李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社,1999
14, 周绥平译,陈惠发.钢框架稳定设计.世界图书出版社,1999
15, steel construction manual,AISC-ASD89,9th edition 美国钢结构学会,1989
16, steel construction manual,AISC-LRFD93,3th edition美国钢结构学会,1993
17, 渡边邦夫等.钢结构设计与施工.中国建筑工业出版社,2000
18, 罗福午等译,本格尼.高层建筑钢 混凝土 组合结构设计.中国建筑工业出版社,1999
钢结构史纲:
1660 虎克发现材料变形与受力大小的比例关系(虎克定律)
1744 欧拉Euler推导出压秆稳定极限荷载公式,沿用至今。
1779 第一座铸铁拱桥,英格兰Coalbrookdale大桥建造完成。
1786 法国建造巴黎法兰西剧院,铁+玻璃顶。欧元上有没有?
1820 美国费城建造第一栋铸铁建筑 (名称?)
1828 维也纳建造第一座钢桥 (名称?)
1851年,伦敦花匠帕克斯顿设计的“水晶宫”展览馆,为玻璃铁架结构,完全表现了工业生产的机械本能。“水晶宫”开创了建筑形式的新纪元。
1856 美国开始产钢
1874 第一座大跨钢桁桥Eads Bridge在圣路易(St. Louis)建成
1881 电弧焊工艺问世
1883 布鲁克林(Brooklyn)吊桥完工.始建于1869年
1889年,法国世博会上设计的“埃菲尔铁塔”和“机械馆”,“埃菲尔铁塔”为高架铁结构,塔高328M。“机械馆”是空前未有的大跨度结构,刷新了世界建筑的新纪录,长420M,跨度达115M,结构方法首次运用了三铰拱的原理。
1889 CHICAGO的The Rand Mcnally Building(图中4号楼)建成,成为第一栋全钢结构的大厦,10层。
1890 3月苏格兰福斯桥(Firth of Forth Bridge)完成,用钢55,000吨,57条生命。8百万铆钉运回家。
1907 美国设立伯力恒钢厂(Bethlehem Steel)
1908 伯力恒(Bethlehem Steel)开始生产热轧型钢
1909年,德意志制造联盟的彼得。贝伦斯设计了“柏林通用电气公司透平机车间”,以钢结构为骨架与大玻璃窗为特点,被称为是第一座真正的现代建筑。
1909 美国麻州采用热轧型钢用于建筑结构
1914 匈牙利Kazinczy证实梁具有塑性铰极限行为。
1921 美国钢结构学会AISC成立